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Abstract

In this paper, a quasi-static formulation of the method of multi-scale boundary conditions (MSBCs) is derived and
applied to atomistic simulations of carbon nano-structures, namely single graphene sheets and multi-layered graphite. This
domain reduction method allows for the simulation of deformable boundaries in periodic atomic lattice structures, reduces
the effective size of the computational domain, and consequently decreases the cost of computations. The size of the
reduced domain is determined by the value of the domain reduction parameter. This parameter is related to the distance
between the boundary of the reduced domain, where MSBCs are applied, and the boundary of the full domain, where the
standard displacement boundary conditions are prescribed. Two types of multi-scale boundary conditions are derived: one
for simulating in-layer multi-scale boundaries in a single graphene sheet and the other for simulating inter-layer multi-scale
boundaries in multi-layered graphite. The method is tested on benchmark nano-indentation problems and the results are
consistent with the full domain solutions.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Computational methods for atomistic simulations, such as molecular mechanics and molecular dynamics
(MD), find application in many areas of research by providing information about processes happening at
the micro- and nano-scales. However, applicability and effectiveness of these methods often depend on the
ability to fulfill large scale computations; and despite the availability of high-performance computers, these
methods are still restricted to solving systems that are too small for even nano-scale problems. Solvable sys-
tems are several orders of magnitude smaller than the scales of the real-life nano-mechanical experiments. This
situation is resolved by using the so-called multi-scale, or coupled atomistic–continuum, methods. In this case,
atomistic simulations are used only for a reduced domain (fine scale region) where resolution down to the
atomic scale is necessary.
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Depending on the technique used to model the effect of the exterior coarse scale region surrounding the fine
scale atomistic domain, there are two major types of coupled atomistic–continuum methods: (1) methods explic-
itly modeling the exterior region using continuum approach, typically a finite-element method, and (2) methods
using continuum or lattice Green’s functions to eliminate degrees of freedom associated with the exterior
region.

Among the most noticeable work on the methods of the first type is that by Kohlhoff and co-workers [1], who
initiated this approach by developing finite-element/atomistic (FEAt) method, quasicontinuum method devel-
oped by Tadmor et al. [2], and the work by Shilkrot et al. [3] who introduced a discrete dislocation technique
into the continuum along with a mechanism for passing the dislocations through the atomistic–continuum
interface (CADD method). Recent advances in this area include the bridging scale method developed by Wag-
ner and Liu [4]. The method is based on the bridging scale decomposition in which finite element approximation
co-exists with atomistic description in the fine scale region. Qian et al. [5] used the bridging scale method to
develop a virtual atom cluster (VAC) model for quasi-static simulations of carbon nano-tubes. However,
despite the overall success of this type of multi-scale methods, there exist a number of complications due to
the presence of two different scales and the necessity to model them simultaneously. Thus, the coarse scale
region has to be explicitly modeled in the simulations and a special treatment is needed to ensure a smooth cou-
pling at the interface between the continuum and atomistic domains.

A Green’s function approach makes it possible to eliminate completely degrees of freedom associated with
the coarse scale region and to model by direct simulations only the fine scale domain. Methods of this type are
often called the flexible (or deformable) boundary methods. A number of such methods using both continuum
and lattice Green’s functions have been developed. Thus, Sinclair et al. [6] introduced a flexible boundary
scheme for two-dimensional domains and applied it to atomistic simulations of straight dislocations in 2D.
Rao et al. [7] have extended this technique to three dimensions and used it to study dislocations in 3D.
The main purpose of this method is to relieve the constraints imposed at the rigid boundaries of the finite
atomistic domains appearing in the simulations of defects, such as crack tips and dislocations. In these studies,
lattice Green’s functions were used for atoms that were close to the source of the force, while continuum
Green’s functions were used for atoms far from the force source. One of the disadvantages of this type of
method is that the nature of the defect has to be known beforehand in order to determine the appropriate
continuum Green’s functions. In addition, the solution procedure used in these studies in order to bring
the system to a state close to equilibrium required several repeated steps involving the system relaxation
followed by correction of atomic positions based on the Green’s functions.

A lattice Green’s function approach for lattice statics calculations has been known for a long time (see, e.g.
[8]). The method was revisited and further developed by Thomson et al. [9] and then applied to studies of dis-
location nucleation and crack stability by Zhou et al. [10]. In general, these methods allowed for a significant
domain reduction. However, they were typically designed for infinite lattice structures or structures with peri-
odic boundary conditions. Furthermore, these methods were often specifically tailored for the treatment of
lattices with particular point defects. A general multi-scale theory using lattice Green’s function approach
for finite domains is still in quest. A comprehensive review of the multi-scale methods can be found in recent
papers by Curtin and Miller [11] and Liu et al. [12]. A review of the multi-scale methods with a special empha-
sis on the simulations of defects and dislocations was given by Moriarty et al. [13].

In this work, a multi-scale method for static analyses of finite periodic lattice structures is presented. The
method uses a lattice Green’s function approach to model the response of the exterior coarse scale region by
imposing the so-called multi-scale boundary conditions (MSBCs) at the boundaries of the reduced atomistic
domain (fine scale region). The main distinctive feature of the current method, as compared to other methods
utilizing the lattice Green’s function concept, is that it has an intrinsic multi-scale character. It is designed for
modeling large, though finite, domains, where two different length scales are involved. The method accounts
for both local and peripheral effects. For instance, displacements at the outer boundary of the coarse scale
domain can be prescribed. This was not the case in the earlier studies, where the Green’s functions were usu-
ally found for infinite structures or those with periodic boundary conditions. The current method is concerned
with the accurate modeling of finite domains of a given size that can be efficiently divided into coarse and fine
scale regions. The size of the coarse scale region is characterized by the special domain reduction parameter,
which is a key feature of the current method.



838 S.N. Medyanik et al. / Journal of Computational Physics 218 (2006) 836–859
The present method was inspired by the MD boundary condition approach by Wagner et al. [14] and
Karpov et al. [15], who applied it to molecular dynamics simulations of model problems using simplified inter-
atomic forces. However, there are substantial differences in the mathematical formulation as well as physical
interpretation of this method for dynamic and static cases. For instance, the dynamic formulation implies that
the full domain is infinite, which results in a dissipation (one-way transfer) of energy through the multi-scale
boundary of the reduced domain. The multi-scale boundary conditions in the dynamic formulation are called
impedance or non-reflecting boundary conditions. When the energy input into the fine scale region is needed,
coupling with continuum simulations of the surrounding coarse scale region is necessary. As a result, the
dynamic formulation of the method was predominantly used as an integral part of a more general bridging
scale atomistic–continuum coupled method [16–18], where the non-reflecting boundary conditions are used
to ensure a smooth transition between the two scales taking care of the wave reflections at the boundary
between the atomistic and continuum domains.

The method’s formulation is based on Fourier analysis of finite periodic lattice structures. In order to apply
the discrete Fourier transform, the whole domain is discretized into identical unit cells that consist of one or
several atoms. The choice of a representative unit cell depends on the translational symmetry of the periodic
lattice as well as the type of interatomic forces. The static formulation (as opposed to dynamic) requires an
introduction of a new parameter (we call it a domain reduction parameter), which is equal to the number
of unit cells between the boundary of the fine scale region and the boundary of full domain. The domain
reduction parameter determines the size of the cut-off coarse scale region, and therefore defines the size of
the full domain. The MSBCs are derived in terms of displacements for the layer of unit cells at the interface
between the fine and coarse scale regions. MSBCs applied at the boundary of the reduced domain lead to an
actual solution of the problem for the given finite full domain with no need for direct simulations of the coarse
scale part. It is only required that known displacement boundary conditions are prescribed at the outer bound-
ary of the full domain and that there are no external forces applied inside the coarse scale region.

In this paper, we test and validate the method applying it to three-dimensional atomistic simulations of a
realistic material, namely graphite, that has a complex periodic structure and interatomic forces. A three-body
Tersoff–Brenner interatomic potential [19,20] was used for modeling strong covalent bonds between the atoms
in the same graphene layer, while weak van der Waals forces between the layers were modeled with a pair-wise
Lennard–Jones potential. These two types of interatomic forces led to two different types of the MSBCs: one
for simulating the in-layer multi-scale boundaries in a single graphene sheet and the other for simulating the
inter-layer multi-scale boundaries in multi-layered graphite. The issue of intersection of the multi-scale bound-
aries is addressed in this paper on a systematic basis. The accuracy of the method depends on the size of the
cut-off region and reduces with increased domain reduction. Error due to the method is estimated for all the
employed benchmark problem tests.

The paper is organized as follows. Section 2 contains a description of the mathematical theory behind the
method of multi-scale boundary conditions. In Section 3, we apply the method to a single graphene sheet; and
we test it on a model indentation problem in Section 4. In Section 5, the method is applied to a multi-layered
graphite structure; and in Section 6, the results of simulations for the indentation of multi-layered graphite are
presented. Comments on the computational savings due to the method are given in Section 7. Finally, discus-
sion of the results and conclusions are provided in Section 8.

2. Method of multi-scale boundary conditions

In this section we describe the mathematical foundation of the method of multi-scale boundary condi-
tions for the quasi-static case. The method is based on Fourier analysis of regular atomic lattice struc-
tures. Previously, a discrete Fourier transform was used by Karpov et al. [21] for the static analysis of
repetitive engineering structures, for instance, beam-like and plate-like trusses. Recently, the dynamic for-
mulation of this method was presented and applied to molecular dynamics simulations of infinite repetitive
crystal structures [14,15]. In the current work, we present the method for the quasi-static case and describe
it below in application to a simple two-dimensional lattice deforming in a three-dimensional space. The
method can be easily extended to a more complicated case of a three-dimensional lattice, and this will
be shown in Sections 5 and 6.
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2.1. Problem statement and a representative unit cell approach

We consider a two-dimensional periodic atomic structure. A simple example of such structure is given in
Fig. 1. Here, the whole domain can be reproduced by a translation of a representative unit cell consisting
of one atom along the two orthogonal directions n and m, and the cells can be labeled as (n,m) along these
directions. In general, the representative unit cell may consist of more than one atom, and the choice of the
unit cell depends on the translational symmetry of the crystal lattice and the type of interatomic forces. A
more detailed discussion on the choice of the unit cell is given in Section 3, where the method is applied to
a single graphene layer.

For simplicity, in this section we assume that each atom of the structure shown in Fig. 1 is directly inter-
acting with its four nearest neighbors only. If the atomic displacements are small enough, we can assume a
linear dependence of forces on the displacements. In this case, the internal force acting on the cell (n,m)
can be written as
Fig. 1.
associa
the fin
f int
n;m ¼

Xnþ1

n0¼n�1

Xmþ1

m0¼m�1

Kn�n0 ;m�m0un0 ;m0 ; ð1Þ
where components of stiffness matrices Kn,m are either defined explicitly or can be derived from the interatomic
potential as
Kn�n0 ;m�m0 ¼ �
o

2V ðuÞ
oun;moun0 ;m0

����
u¼0

. ð2Þ
Here it is convenient to introduce a notion of an associate substructure. The associate substructure of a given
lattice structure includes a given representative unit cell along with all the neighbor cells that have atoms
directly interacting with the atoms of the given cell. The form of the associate substructure depends on the
geometry of the lattice structure, interatomic forces, and the choice of a representative unit cell. For our exam-
ple shown in Fig. 1 the associate substructure consists of five single-atom cells. For instance, the associate sub-
structure of cell (n,m) also includes cells (n,m ± 1), (n ± 1,m). The number of cells in the associate
substructure defines the number of non-zero matrices K in Eq. (1).

We divide the whole domain into two major parts. The first one is a domain of interest, where deformation
can be so large that the relationship between the atomic forces and displacements is highly non-linear and even
the regularity of the lattice structure may break down. We refer to this part of the domain as a fine scale region

(layers n 6 0 in Fig. 1). The second part of the domain consists of a regular atomic structure, and the regu-
larity is preserved throughout the deformation process. Moreover, the deformation in this region is assumed
to be small enough so that the dependence between forces and displacements can be approximated by the
Periodic two-dimensional atomic lattice structure consisting of a number of infinite atomic layers (n 6 a). Degrees of freedom
ted with the coarse scale part of the domain (layers 1 < n < a) are eliminated from the simulations. The reduced domain consists of

e scale region (layers n 6 0) and the interface layer n = 1.
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linear relationship (1). We refer to this part of the domain as a coarse scale region (layers 1 < n < a in Fig. 1).
We also require that the displacements are prescribed at the peripheral boundary of the full domain (layer
n = a in Fig. 1), and the external forces can be applied only inside the fine scale region. The number of cell
layers between the boundary of the fine scale region and the peripheral boundary of the full domain we call
a domain reduction parameter and denote as aDRP. Thus, in Fig. 1 the label of the boundary layer is a = aDRP.
The value of this parameter defines the size of the coarse scale region, which we want to eliminate from the
simulations.

Our final goal is to eliminate all the degrees of freedom associated with the coarse scale part of the full
domain while retaining its effect on the fine scale region. This can be achieved by applying special boundary
conditions to the layer of atoms n = 1, which serves as an interface between the two scales. We called these
boundary conditions the multi-scale boundary conditions (MSBCs). As it will be shown in the following sec-
tions, such boundary conditions can be derived for the displacements of the interface layer n = 1 in terms of
the displacements of the layers n = 0 (the first layer of the fine scale region next to the interface layer) and
n = a (the peripheral boundary of the full domain), where a = aDRP. Thus, due to the applied MSBCs the
initially large computational domain will shrink to the size of the reduced domain, consisting of the fine scale
region and the interface layer.

2.2. Discrete fourier transform

To achieve the goal stated above, we are going to use the method of discrete Fourier transform (DFT) and
apply it to the regular atomic lattice structure, which is discretized using a representative unit cell approach as
described above. The DFT of a discrete function fn is defined as
f̂ ðpÞ ¼Fn!pffng ¼
X

n

fne�ipn. ð3Þ
We are using the traditional hatted notations for the transform functions. Also, in our derivations we use the
following important DFT property, which is called the convolution theorem:
F
X

n0
fn�n0gn0

( )
¼ f̂ ðpÞĝðpÞ. ð4Þ
2.3. Derivation of the method

The equilibrium condition for a current cell (n,m), involving the linearized internal force (1), gives:
Xnþ1

n0¼n�1

Xmþ1

m0¼m�1

Kn�n0;m�m0un0;m0 þ fext
n;m ¼ 0. ð5Þ
Application of the two DFTs, Fn!p and Fm!q, to the above equation and the use of the convolution theorem
(4) give:
K̂ðp; qÞûðp; qÞ þ f̂extðp; qÞ ¼ 0; ð6Þ

from which we can find the transform displacements
ûðp; qÞ ¼ �K̂�1ðp; qÞf̂extðp; qÞ. ð7Þ

Here, it is convenient to introduce a new matrix
Ĝðp; qÞ ¼ �K̂�1ðp; qÞ; ð8Þ

which has a meaning of the lattice Green’s function in the Fourier domain [21].

Now we consider the part of the domain consisting of rows n = 0, . . . ,a (here a = aDRP) separately and
assume that deformation of this subdomain occurs due to some external forces applied at its boundary rows,
n = 0 and n = a. The external force acting on the atomic rows n = 0, . . . ,a will have the form:



S.N. Medyanik et al. / Journal of Computational Physics 218 (2006) 836–859 841
fext
n;m ¼ dn;0f0;m þ dn;afa;m. ð9Þ
Now substituting the above expression for the external force into (7) and applying the inverse (p! n) DFT for
both sides, we find for n = 0,1, . . . ,a:
ûnðqÞ ¼
Xa

n0¼0

Ĝn�n0 ðqÞf̂ext
n0 ðqÞ ¼ ĜnðqÞf̂0ðqÞ þ Ĝn�aðqÞf̂aðqÞ. ð10Þ
For n = 0, n = 1, and n = a we have:
û0ðqÞ ¼ Ĝ0ðqÞf̂0ðqÞ þ Ĝ�aðqÞf̂aðqÞ;
û1ðqÞ ¼ Ĝ1ðqÞf̂0ðqÞ þ Ĝ1�aðqÞf̂aðqÞ;
ûaðqÞ ¼ ĜaðqÞf̂0ðqÞ þ Ĝ0ðqÞf̂aðqÞ.

ð11Þ
Now using the first and the third equations of (11) we write the unknown force vectors f0 and fa in terms of u0

and ua:
f̂0ðqÞ
f̂aðqÞ

 !
¼ Ĝ0ðqÞ Ĝ�aðqÞ

ĜaðqÞ Ĝ0ðqÞ

 !�1
û0ðqÞ
ûaðqÞ

� �
ð12Þ
and substituting them into the second equation of (11) we get
û1ðqÞ ¼ Ĝ1ðqÞ Ĝ1�aðqÞ
� � Ĝ0ðqÞ Ĝ�aðqÞ

ĜaðqÞ Ĝ0ðqÞ

 !�1
û0ðqÞ
ûaðqÞ

� �
. ð13Þ
Finally, introducing a new pair of matrix functions H and N as
ĤðqÞ N̂ðqÞ
� �

� Ĝ1ðqÞ Ĝ1�aðqÞ
� � Ĝ0ðqÞ Ĝ�aðqÞ

ĜaðqÞ Ĝ0ðqÞ

 !�1

; ð14Þ
we obtain
û1ðqÞ ¼ ĤðqÞû0ðqÞ þ N̂ðqÞûaðqÞ. ð15Þ

Thus, we have expressed the displacements of row n = 1 in terms of the displacements of rows n = 0 and n = a

for the transformed domain. Now, applying the inverse (q! m) DFT to Eq. (15), we find the final form of our
multi-scale boundary conditions:
u1;m ¼
X

m0
ðHm�m0u0;m0 þ Nm�m0ua;m0 Þ. ð16Þ
Here, the kernel matrices H and N have a 3 · 3 size (in the case of a 3D deformation) and their values are
dimensionless since Eq. (16) relates displacements to displacements. In general, the unit cell may consist of
more than one atom. In this case the size of the kernel matrices will be proportional to the number of atoms
per cell.

Strictly, the convolution summation in (16) should be done over a number of subscripts m 0: m �Mc 6 m 0 6

m + Mc, where Mc!1. Meanwhile, in practical applications we have to use a finite, preferably small, cut-off
parameter mc = Mc. Thus, effectiveness of the method of multi-scale boundary conditions hinges upon the fast
decay of matrices Hm and Nm with the growth of the absolute value of index m.

In many applications the boundary of the coarse scale domain (n = a) is fixed, (ua = 0). In this case the sec-
ond term in Eq. (16) vanishes; and, using the summation truncation discussed above, we can rewrite (16) as:
u1;m ¼
Xmþmc

m0¼m�mc

Hm�m0u0;m0 . ð17Þ
Fig. 2 illustrates the case when the peripheral boundary is fixed, and the cut-off parameter mc = 1 is used as an
example. In this case, by Eq. (17) the displacements of a single atom cell (1, 0) of row n = 1 can be written as



Fig. 2. Degrees of freedom associated with the coarse scale region (atomic layers 1 < n < a, a = aDRP) are eliminated from the simulations.
Reduced domain consists of the fine scale region (layers n 6 0) and the interface layer n = 1. Displacements of the interface layer u1 are
determined only by the displacements u0 of the layer n = 0, if the peripheral boundary n = a is fixed.

Fig. 3.
a = aD

n = 1.
n = a.
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u1;0 ¼ H1u0;�1 þH0u0;0 þH�1u0;1. ð18Þ

In the following section the method is applied to the atomic lattice of a single graphene sheet, and then it is
used for molecular mechanics simulations of a nano-indentation problem.

3. Application to a single graphene sheet

3.1. A representative unit cell approach for a single graphene sheet

In graphite, carbon atoms form strong covalent bonds with three neighboring atoms in the same plane, thus
forming a honeycomb structure as shown in Fig. 3. There are two major shapes of edges in a graphene layer –
zigzag and armchair. For instance, the two vertical edges of the rectangular atomic structure explicitly shown
in Fig. 3 (identified as layers n = �1 and n = a) are zigzag, while the two horizontal edges are armchair. The
MSBCs for a graphene layer can be applied along the edges of both types.

To employ the method for a specific lattice structure, first we have to divide the whole domain into unit cells
so that every atom belongs to one and only one cell and then find a way of labeling those cells throughout the
domain. The choice of a representative unit cell and the labeling nomenclature depends on the geometry of the
Method applied to a single graphene layer. Degrees of freedom associated with the coarse scale region (atomic layers 1 < n < a,
RP) are eliminated from the simulations. Reduced domain consists of the fine scale region (layers n 6 0) and the interface layer
Displacements of the interface layer u1 are determined by the displacements u0 and ua of the layer n = 0 and the peripheral boundary
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repetitive lattice structure and is not unique for a given lattice, but there are reasons that elucidate the best
choice.

First of all, using a translational symmetry of the lattice structure, we should be able to reproduce the whole
domain by translation of one unit cell in two different (not necessarily orthogonal) directions for a two-
dimensional lattice and in three directions for a three-dimensional lattice. Second, the directions of translation
and, thus, labeling the cells should be aligned with the boundary of the domain where we want to apply our
multi-scale boundary conditions. Third, atoms in each cell should be directly interacting through interatomic
forces only with the atoms of the current cell and the immediately neighboring cells. And, finally, for elegance
and convenience of implementation we want the representative unit cell to be as small as possible.

Taking into account the above recommendations, for a single graphene sheet with the MSBCs applied
along a zigzag face, we chose the unit cell consisting of two atoms and the numbering along directions n

and m as shown in Fig. 3. Note that there are no principal differences in applying the method to the armchair
boundary, but the unit cell would then have to be extended to four atoms and translation would be done along
two orthogonal directions. In the current work we are using the method with a zigzag type of boundary only.
As it will be seen from the nano-indentation example in the following section, applying the MSBCs to six zig-
zag boundaries of a hexagonal shaped domain allows for the whole area of localized deformation to be con-
veniently surrounded by a multi-scale boundary.

In the molecular mechanics simulations, the interatomic interaction forces are derived from a classical
potential. For the interactions between carbon atoms in the same layer we use a Tersoff–Brenner potential
[19,20] with a set of parameters denoted as Potential II in [20]. Due to a three-body component of this poten-
tial, every atom interacts not only with its three nearest, but also with six secondary neighbors. Based on this,
we can now construct an associate substructure. As it was defined in Section 2.1, the associate substructure
consists of a given unit cell and all the neighbor cells that have atoms directly interacting with at least one
atom of the given unit cell. Thus, the associate substructure for a single graphene layer shown in Fig. 3 consists
of a total of seven unit cells. For instance, the associate substructure of cell (n,m) also includes cells (n,m ± 1),
(n ± 1,m), (n + 1,m � 1) and (n � 1,m + 1). The form of the associate substructure defines the number of stiff-
ness matrices K that relate the linearized forces to displacements by Eq. (1). The K matrices are then used to
compute the kernel matrices H that are the key element of the present method.

3.2. H matrices

Following the procedure described in Section 2, matrices Hm were computed. The left plot in Fig. 4 shows a
typical dependence of the matrices on parameter m, demonstrating a fast decay of the matrix components with
the growth of the absolute value of m. The largest component of the kernel matrices is H0(6, 3). The reason for
this becomes obvious upon inspection of the lattice structure of the graphene layer (Fig. 3). Indeed, according
to Eq. (17) this component relates the vertical (normal to the sheet’s plane) displacements of the two closest
Fig. 4. Values of components of kernel matrices Hm vs. parameter m. Left: typical shapes of several components, domain reduction
parameter aDRP = 10. Right: logarithmic plot of one component vs. parameter m for aDRP = 10, 20, 50.



Fig. 5. Maximum values of matrices Hm vs. domain reduction parameter aDRP.
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atoms of rows n = 1 and n = 0. For instance, if we use the unit cell labeling as shown in Fig. 3 and calculate
displacements of a current cell (1,0) of the row n = 1 from the displacements of row n = 0, then the component
H0(6, 3) is relating the vertical displacement of the lower atom of cell (1,0) to the vertical displacement of the
upper atom of cell (0, 0).

Fast decay of the matrix components with the growth of the absolute value of m allows using a small value
of the truncation parameter mc in Eq. (17), which considerably reduces the computational cost of the method.
A dependence of this decay on the domain reduction parameter can be seen from a logarithmic plot of H0(6, 3)
for the three values aDRP = 10, 20, 50, which is shown in the right plot of Fig. 4.

Fig. 5 shows the values of the maximum components of matrices Hm (m = 0, 1, 2, 3) vs. domain reduction
parameter aDRP. It can be seen that with the growth of aDRP the maximum components for each of the four
matrices asymptotically approach some constant value. On the other hand, as can be seen from the logarith-
mic plot (Fig. 4), the decay of the matrices Hm with the growth of the absolute value of m becomes less steep
with increased aDRP. This seems quite natural, since with the growth of the domain reduction parameter the
fixed boundary of the full domain (row n = a, a = aDRP) is moving further from the multi-scale boundary of
the reduced domain (row n = 1), and its effect becomes more non-local. Thus, using the multi-scale boundary
conditions with larger values of the domain reduction parameter requires using a larger value of the cut-off
parameter mc in (17). However, due to the fast decay of the kernel matrices for graphite, we found that using
a value of mc = 4 is sufficient, and we used this value in our simulations.

3.3. Treatment of the multi-scale boundaries intersections

In practical applications of the method of MSBCs one will have to deal with intersections of the multi-scale
boundaries. Two linear multi-scale boundaries can intersect in a two-dimensional lattice structure, creating an
angle in the overall boundary of the reduced domain. In the case of a three-dimensional lattice, two or three
plane multi-scale boundaries can intersect, thus creating an edge. We discuss the issues concerning the inter-
sections of the multi-scale boundaries considering the angle formed by the two zigzag faces of the graphene
layer, see Fig. 6. For convenience, we introduce a local cell numbering as shown in the figure. We will refer
to the two sides that form the angle as the right and the bottom edges. The atoms of the cells labeled
(1,m), m P �1 belong to the right edge of the reduced domain, and the atoms of the cells (n,�1), n 6 1 belong
to the bottom edge. The cell (1,�1), corresponding to a point where the two edges meet, belongs to both of
them. Covalent bonds between the atoms of the reduced domain are shown in the figure with solid lines.

The fixed boundary of the full domain (its atoms shown in the figure are connected with dotted lines) has an
angle formed by the intersection of the two layers, n = a and m = �a, which represent, correspondingly, the
right and the bottom faces of the full domain. The cell (a,�a) is at the vertex of the angle. Here we assume that
the MSBCs applied at the two edges of the reduced domain correspond to the same value of a domain reduc-
tion parameter and a = aDRP. In general, this is not necessary, and different values of the domain reduction
parameter can be used for each individual part of the intersecting multi-scale boundaries.



Fig. 6. Intersection of the two multi-scale boundaries in a graphene layer. The fixed boundary of the full domain has an angle formed by
the intersection of the two layers of unit cells, n = a and m = �a. The multi-scale boundary of the reduced domain has an angle formed by
the intersection of layers n = 1 and m = �1.
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There are two major issues regarding the intersection of the multi-scale boundaries. The first one results
from the fact that when we treat each of the two edges individually, we have two sets of Eq. (17), one for
the right edge of the reduced domain and the other for the bottom edge; and the cells that are close to the
intersection should enter both sets of equations.

Similar to (17), the MSBCs can be written for the right edge as
u1;m ¼
Xmþmc

m0¼m�mc

HR
m�m0u0;m0 ; ð19Þ
and for the bottom edge as
un;�1 ¼
Xnþnc

n0¼n�nc

HB
n�n0un0 ;0. ð20Þ
Here, Eq. (19) looks exactly like (17) as we derived it in Section 2.3, but Eq. (20) is written in a different form.
This is because Eq. (17) was derived for a special case when the interface and peripheral boundary layers were
labeled n = 1 and n = a correspondingly, whereas in general the same can be derived using other layers (both
along n and m directions) as the interface and the full domain boundary. Thus, Eq. (20) is used for the MSBCs
applied along the interface layer m = �1 and relates the displacements of its atoms to those of the layer m = 0
when the layer m = �a is a fixed boundary of the full domain. To distinguish the kernel matrices in the above
equations, we denoted them as HR and HB. The kernel matrices HB can be derived in a similar manner by
repeating steps (9)–(16) of Section 2.3.

As can be seen from Fig. 6, in order to compute atomic displacements for the cells (1, m), �1 6 m 6 mc � 1
using Eq. (19), we need to know the displacements for the cell (0,�1), which in its turn lies on the multi-scale
boundary and has to be found from Eq. (20). Similarly, the cell (1, 0) has to be determined from (19) in order
to be used in (20). Thus, the two sets of Eqs. (19) and (20), namely (19) for �1 6 m 6 mc � 1 and (20) for
�nc + 1 6 n 6 1, are coupled and have to be solved simultaneously. The area affected by the intersection
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depends on the values of the cut-off parameters nc, mc and includes the cells (1,m), �1 6 m 6 mc � 1 at the
right edge and cells (n,�1), �nc + 1 6 n 6 1 at the bottom edge of the reduced domain.

Here we note that use of the two different types of kernel matrices is needed only when treating the inter-
sections of the multi-scale boundaries. For the areas of the multi-scale boundaries not affected by the inter-
section we can use the same set of kernel matrices, say HR, by rotating the frame of reference and using
the local cell labeling consistent with the one which the matrices were derived for.

The second issue regarding the intersection of the multi-scale boundaries is caused by unavailability of a
group of atoms in the reduced domain which are required to compute the atomic displacements for the cells
at the multi-scale boundary. It turns out that the atoms needed for one multi-scale boundary are cut-off by the
other. For instance, to compute displacements for the cell (1, 0) at the right edge using the value of truncation
parameter mc = 3, we need to know the displacements of the seven cells from (0,�3) to (0, 3), where the cells
(0,�3) and (0,�2) are not present in our atomistic simulations of the reduced domain but exist in the full
domain being modeled. It can be seen that this issue is relevant for the cells up to (1, mc � 1) on the right edge
and down to (�nc + 1,�1) on the bottom edge of the reduced domain.

Neglecting this issue is equivalent to assuming zero displacements for those ‘‘non-existing’’ atoms and
results in a non-physical fixation of the angles (or the edges) of the reduced domain where the multi-scale
boundaries intersect. In order to resolve this issue, one needs to extrapolate the displacements field beyond
the boundaries of the reduced domain by introducing the ‘‘ghost’’ atoms that belong to the missing cells. These
atoms are shown in the figure as a continuation of the reduced domain and are connected by the dashed lines.
There are several different ways to define the values for the displacements of these new unit cells. In our cal-
culations we simply use a constant extrapolation, taking the displacements of the ‘‘ghost’’ cells equal to those
of the last existing cell of the same row that lies on the multi-scale boundary of the reduced domain. For
instance, we assume the displacements of the atoms in the cells from (2,0) to (nc + 1,0) equal to those of
the cell (1,0) and the displacements of the cells (0,�2) to (0,�mc � 1) equal to those of the cell (0,�1).

4. Example: nano-indentation of a single graphene sheet

4.1. Problem statement

A spherical indenter of radius R is applied in a displacement control manner to the center of a graphene
sheet of hexagonal shape in a direction perpendicular to the plane of the sheet (see Fig. 7). On each step,
the indenter is lowered by 0.5 Å, and then energy is minimized using the conjugate gradient method.

The indenter is modeled using a repulsive potential. On every atom located in the vicinity of the center of
the indenter closer than the indenter radius acts a repulsive force:
Fig. 7. Schematic representation of the problem statement for nano-indentation of a single graphene sheet. The characteristic dimension
of the coarse scale region being eliminated from simulations, La, is proportional to the domain reduction parameter. The indenter radius R

is 10 Å.



Fig. 8.
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F i ¼ AðR� riÞ2; ð21Þ

where R is the radius of the indenter, A is a parameter governing its stiffness, and ri is a distance between the
centers of the indenter and current atom. In our simulations we used the value of A = 100 eV/Å3, correspond-
ing to a very stiff (nearly rigid) indenter, and the radius of the indenter was R = 10 Å.

The outer boundary of the full domain (represented by a solid line in the figure) is fixed. Multi-scale bound-
ary conditions are applied at the boundary of the reduced domain, which is shown with a dashed line in Fig. 7.
The size of the reduced domain is determined by the domain reduction parameter, aDRP, which represents the
number of unit cell layers between the boundaries of the reduced and full domains. The characteristic dimen-
sion of the coarse scale region being eliminated from the simulations, La, is equal to the domain reduction
parameter times the size of the representative unit cell. The MSBCs are applied to each of the six zigzag sides
of the reduced domain. The six angles (intersections of the zigzag sides) are treated using the method explained
earlier in Section 3.3.

4.2. Results of simulations

Molecular mechanics simulations were carried out for reduced domains of different sizes, using MSBCs
with different values of the domain reduction parameter, and the results were compared to the corresponding
full domain solutions. For the multi-scale simulations presented in this section we have used a cut-off param-
eter value mc = 4. Here, we demonstrate our results on one example when the size of the reduced domain is
2646 atoms, and the value of the domain reduction parameter is aDRP = 30, which corresponds to the full
domain size of 15,000 atoms.

Fig. 8 shows the reduced domain along with the fixed boundary of the full domain at four stages of the
indentation process starting from the initial configuration, when all the atoms were in the same plane, and
then after the indenter penetrates to the depths of 10, 20, and 30 Å. The pictures in Fig. 8 have true aspect
ratio, i.e., they use the same scale in all dimensions.

The deformed configuration of the reduced domain at the final stage (after indenting to the depth of 30 Å)
can be seen in more detail in Fig. 9. Initially, the graphene sheet was positioned in the plane Z = 0. It can be
seen that due to the applied MSBCs the whole boundary of the reduced domain has moved from its initial
position (Z = 0) downwards in the direction of indentation, representing a deformable boundary.

Fig. 10 shows a comparison of the vertical displacements of the reduced domain to the full domain solution
for the atoms at the cross-section of the sheet by the plane Y = 0. This comparison proves to be very close.
Note that Figs. 9 and 10 show the actual scale of deformation, proving the method works well even for quite
large deformations. The largest error in displacement is found at the edges of the reduced domain where multi-
scale boundary conditions are applied. The maximum error here is estimated at 4.9%. The error reduces
Multi-scale simulations of the indentation of a graphene layer; reduced domain is shown along with the fixed boundary of the full
n. Four steps: depth of indentation = 0, 10, 20, 30 Å.



Fig. 9. Deformed configuration of the reduced domain after indenting to the depth of 30 Å. Size of the reduced domain is 2646 atoms, size
of the corresponding full domain is 15,000 atoms. Domain reduction parameter aDRP = 30.

Fig. 10. Vertical displacements of the atoms lying on the middle line cross-section: reduced domain multi-scale simulations (crosses) vs.
full domain solution (circles). Domain reduction parameter aDRP = 30.

Fig. 11. Force (eV/Å) vs. indentation depth (Å).
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steadily towards the center of the domain and is almost zero at the center, right under the indenter. Mean error
over the cross-section of the reduced domain shown in Fig. 10 is 1.36%. Fig. 11 shows very good agreement
between multi-scale and full domain results for the force vs. depth of indentation curve. The force here is given
in units of eV/Å, and 1 eV/Å � 1.602 nN. The maximum deviation in force between the full and reduced
domain solutions is at the indentation depth of 23 Å and is equal to 0.785 eV/Å, which corresponds to the
percentage error of 4.27%.

5. Application to multi-layered graphite

5.1. Multi-layered graphite and inter-layer forces

Multi-layered graphite consists of carbon atom layers (basal planes) shifted with respect to each other and
stacked one above another. There are two major forms of multi-layered graphite depending on the stacking
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sequence of the single graphene layers: hexagonal and rhombohedral (e.g., see [22]). In hexagonal graphite,
which is also known as Bernal graphite, every second layer is identical, i.e., located exactly one above another
(ABAB stacking), whereas in rhombohedral graphite only every third layer is identical (ABCABC stacking).
Since the latter type of graphite is thermodynamically unstable, the hexagonal form is prevailing under natural
conditions. Thus, we chose hexagonal type of graphite for our consideration. Fig. 12 shows the structure of the
multi-layered graphite. In every plane, one half of the atoms are located directly above the atoms of the adja-
cent plane, whereas the other half face the empty centers of the hexagons of the neighboring layers.

For simulation of inter-layer forces we are using Lennard–Jones potential:
E ¼ 4�
r
r

� �12

� r
r

� �6
	 


; ð22Þ
where r is a distance between two atoms located in different basal planes, and parameters have the following
values: � = 0.00188 eV, r = 3.3264 Å [23]. With these parameters, the spacing between the layers in equilib-
rium, LAB, is about 3.348 Å which agrees well with the values observed experimentally as well as with results
of ab initio simulations [23,24]. For more information on interatomic potentials used for modeling carbon
nano-structures see, e.g., a review by Qian et al. [25].

5.2. Modeling inter-layer multi-scale boundaries

Application of the method of MSBCs to multi-layered graphite involves two types of multi-scale bound-
aries. For the lateral boundaries of the reduced domain in each basal plane, we can apply MSBCs that were
derived from the in-layer interactions based on Brenner potential exactly in the same manner as we did it for a
single sheet of graphite in Section 3. Another type of MSBCs should be used for reducing the vertical (in-
depth) dimension of the lattice structure. This new type of MSBCs should be applied to the whole bottom
basal plane of the reduced domain, and it should be derived based on the inter-layer interactions.

Again, as in the beginning of Section 3, we have to choose a representative unit cell and a way of numbering
the cells in different directions. These are dictated by the periodicity and repetitiveness of the crystal structure.
We can see that in the vertical direction, the smallest period of the lattice is two single layers of graphite that
constitute an AB pair. For the two horizontal in-plane directions, we can use the same numbering as we used
for a single graphene layer in Section 3. Thus, we chose a representative unit cell consisting of four atoms, two
of them lying in layer A and two in layer B.

Fig. 13 shows six layers of graphite that form three unit cell layers l = �1, 0, 1. The four atoms of a
representative unit cell are shown as large solid dots. Since we have to use a cut-off for the Lennard–Jones
potential, the number of neighbors for every atom (and consequently the size of the associate substructure)
will depend on the cut-off radius Rc. In our simulations we used value of Rc = 6.0 Å. When using this value
for the cut-off, each atom interacts directly only with the atoms of the two immediately adjacent layers (upper
and lower). The total number of atoms interacting with at least one of the four atoms of the given unit cell is
116 (all solid dots in Fig. 13), 29 atoms per each of the four layers.
A

B

A Layer A 
Layer B

Fig. 12. Atomic structure of hexagonal graphite.



Fig. 13. A representative unit cell and vertical cell labeling for multi-layered graphite. Interlayer distance is LAB = 3.348 Å. Unit cell
consists of 4 atoms (big solid dots) located in the two adjacent graphene layers. When using cut-off Rc = 6.0 Å, atoms of each layer interact
only with the atoms of the immediately adjacent layers. The total number of atoms interacting with the atoms of the given unit cell through
Lennard–Jones potential is 116 (all solid dots), 29 atoms per layer.
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5.3. H matrices for the inter-layer MSBCs

The procedure for deriving kernel matrices H for the inter-layer MSBCs is similar to that used in Section 2
for derivation of the in-layer MSBCs. The only difference is that now the multi-scale boundary is not a line but
a plane. In this case two spatial parameters are used with the matrices, and Eq. (17) of Section 2 is transformed
into:
un;m;1 ¼
Xnþnc

n0¼n�nc

Xmþmc

m0¼m�mc

Hn�n0;m�m0un0;m0 ;0. ð23Þ
The size of the matrices Hn,m is 12 · 12 since the unit cell now consists of four atoms. Fig. 14 shows a typical
behavior of the matrices Hn,m. Here, the values of the two largest components of the matrices are given vs.
spatial parameter n at a fixed parameter m. Similar behavior of the components is observed vs. parameter
m at fixed n. Again, as in the case of in-layer multi-scale boundaries (Section 3), fast decay of the matrix com-
ponents with the growth of the absolute values of the spatial parameters n and m allows using small values for
the truncation parameters nc and mc in Eq. (23), thus, resulting in a considerable reduction of the computa-
tional cost of the method.
Fig. 14. Components of matrices Hn,m vs. parameter n. Domain reduction parameter aDRP = 3.



Fig. 15. Maximum components of matrices Hn,m vs. domain reduction parameter.
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Fig. 15 shows the values of the three maximum components of matrices Hn,m vs. the domain reduction
parameter aDRP. Similar to the case of an in-layer multi-scale boundary, the components of the matrices
approach some asymptotic values with the growth of aDRP, and all the comments regarding this property
made in Section 3.2 hold here as well.

6. Example: nano-indentation of multi-layered graphite

6.1. Problem statement

The problem statement is similar to that of Section 4 (indentation of a single graphene sheet). The only
difference is that now we have L layers stacked in a vertical direction. Schematic representation of the problem
statement is given in Fig. 16. A spherical indenter of radius R is applied to the center of the top layer in a step-
like manner. On each step, the indenter is lowered by 0.5 Å and then the energy is minimized using the con-
jugate gradient method. The bottom and lateral boundaries of the full domain are fixed. The boundary of the
reduced domain, where multi-scale boundary conditions are applied, is indicated in the figure with a dashed
line. Now we have two domain reduction parameters: aDRP

lateral for the in-layer and aDRP
bottom for the inter-layer
Fig. 16. Schematic representation of the problem statement for nano-indentation of multi-layered graphite. The characteristic dimensions
of the coarse scale region being eliminated from simulations in the horizontal and vertical directions, Llateral and Lbottom, respectively, are
proportional to the domain reduction parameters used correspondingly for the lateral and bottom MSBCs. Values of the indenter radius R

used in the simulations are 20 and 40 Å.
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multi-scale boundaries. The characteristic dimensions of the coarse scale region eliminated from the simula-
tions in the horizontal and vertical directions, respectively, are Llateral and Lbottom. These values are propor-
tional to the domain reduction parameters aDRP

lateral and aDRP
bottom, respectively, and are equal to the value of the

domain reduction parameter times the size of the representative unit cell in that direction. Values of the inden-
ter radius R used in these simulations are 20 and 40 Å.

6.2. Results of simulations

Testing the method performance in a consistent way can be done in three steps, each time comparing the
results to the full domain atomistic solutions. In the first example, we apply multi-scale boundary conditions
only to the lateral boundaries of every individual layer of the reduced domain in the same fashion as it was
done in Section 4 for a single sheet of graphite. The bottom layer in this case is free. In the second example, we
use only the inter-layer MSBCs which were derived in the previous section, and we apply them to the bottom
of the reduced domain. This allows for the reduction of the computational domain by a given number of lay-
ers, depending on the value of the domain reduction parameter aDRP

bottom, whereas each layer of the reduced
domain is fully simulated. Finally, in the last examples, both in-layer (lateral) and inter-layer (bottom) MSBCs
are employed, reducing the domain in both horizontal and vertical directions. For all the simulations we used
the cut-off parameters mc = 4 for the in-layer and nc = mc = 4 for the inter-layer multi-scale boundaries, except
for the results where these values are specified explicitly.

6.2.1. Lateral multi-scale boundary

Simulations of the reduced domain consisting of three graphite layers were performed with in-layer MSBCs
applied to the lateral boundaries of each layer using the value of the domain reduction parameter aDRP

lateral ¼ 10.
The size of the reduced domain is 7938 atoms, and the size of the full domain that corresponds to aDRP

lateral ¼ 10 is
16,200 atoms. Thus, the effective size of the computational domain is reduced more than two times.

Here we note that for modeling the lateral multi-scale boundaries in multi-layered graphite, we are employ-
ing the in-layer MSBCs in the same form as they are presented for a single sheet of graphite in Section 3, thus
modeling only in-layer interactions. This methodology is not fully rigorous since it does not account for the
inter-layer interactions beyond the lateral boundaries of the reduced domain. The admission of this simplifi-
cation is based on the assumption that inter-layer forces are crucial only right under the indenter and in the
close vicinity around it, and they are less important at a larger distance from the indentation area. This
assumption can be justified by the close proximity of the results to the full domain solutions in the current
and following sections.

Fig. 17 shows positions of the atoms at the cross-section of the domain by the XZ-plane (Y = 0). The cross-
section also goes through the center of the spherical indenter. It can be seen that after indenting to the depth of
15 Å, the atomic positions of the reduced domain are very close to those of the full domain even at consider-
ably large displacements. Also, a good agreement of the multi-scale and full domain solutions is observed for
the relationship between the force acting on the indenter and the depth of indentation which is shown in
Fig. 18. The maximum error in displacement in each layer is at the multi-scale boundaries of the reduced
Fig. 17. Middle cross-section of the graphite layers under the indenter: reduced domain simulation (crosses) vs. full domain solution
(circles). R = 20 Å. Domain reduction parameter aDRP

lateral ¼ 10. Depth of indentation is 15 Å.



Fig. 18. Force (eV/Å) vs. indentation depth (Å).
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domain, similarly to the case of a single graphene layer test. Among all the layers, the maximum error is in the
bottom one, and it is estimated at 3%. Mean error over the whole reduced domain cross-section shown in
Fig. 17 is around 0.9%. The maximum deviation in force is at the last step, indentation depth of 15 Å, and
is equal to 3.29 eV/Å, which corresponds to the percentage error of 6.15%.

6.2.2. Bottom multi-scale boundary

In these simulations we use only the inter-layer MSBCs, derived in Section 5, applying them to the bot-
tom of the reduced domain. Due to such a multi-scale boundary, the number of layers used for actual
simulations (present in the reduced domain) is decreased, while each layer of the reduced domain has
the same number of atoms as the layers in the original full domain. An insight into implementation of
the method in the case of the inter-layer multi-scale boundaries is provided in Fig. 19 which shows the
numbered double layers of the unit cells as they were defined in Section 5 and used here for the calculation
of the MSBCs.

According to the theoretical derivations of Section 5, displacements of layer l = 1 should be calculated from
displacements of layer l = 0 using Eq. (23) provided that layer l ¼ aDRP

bottom is fixed. For the current problem, we
used only the top single graphene layers of the l = 1 and l ¼ aDRP

bottom double-layers in the actual multi-scale and
full domain calculations, respectively, as shown in Fig. 19. This became possible because of a relatively small
cut-off radius for the Lennard–Jones potential used for modeling the inter-layer interactions, resulting in the
very small (if any) forces between the layers that are not immediate neighbors. The sizes of the reduced and full
domains for this and other problems, where the inter-layer MSBCs are used, are given for the domains, that
were abridged in such a way.

For this problem we used the value of the domain reduction parameter aDRP
bottom ¼ 4. The size of the reduced

domain is 5 layers and total 13,230 atoms, and the size of the full domain corresponding to the given value of
the domain reduction parameter is 11 layers and 29,106 atoms, making the effective size of the computational
domain reduced more than two times. Fig. 20 shows the force–displacement curve for this problem and reveals
that multi-scale and full domain results are close up until the point when breakage occurs. The breakage of the
graphite in both simulations occurred at the same step, corresponding to the indentation depth of 11.5 Å and
force of about 500 eV/Å.

The maximum error in displacement in each of the graphene layers of the reduced domain is in the areas
half-way between the center of the domain where the indenter is applied and the domain boundaries where
fixed boundary conditions are enforced. The maximum error here ranges from under 3% in the top layer to
nearly 10% in the bottom layer. Mean error for the reduced domain cross-section shown in Fig. 19 is estimated
at approximately 5%. Relatively high error in this example may be explained by the fact that it is estimated for
a configuration at the very last step before fracture. This final stage is associated with a strong non-linear
deformation. The maximum deviation in force is found at the indentation depth of 10 Å and is estimated
at 15.1 eV/Å, which corresponds to 5.46% error.



Fig. 20. Force (eV/Å) vs. indentation depth (Å).

Fig. 19. Middle cross-section of the graphite layers under the indenter: reduced domain simulation (crosses) vs. full domain solution
(circles). R = 20 Å. Domain reduction parameter aDRP

bottom ¼ 4. Depth of indentation is 10 Å.
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6.2.3. Combined bottom and lateral multi-scale boundaries

Finally, we employ both in-layer and inter-layer MSBCs, reducing the domain in all three directions. We
used a reduced domain consisting of 7 graphene layers with a total size of 18,522 atoms. Values of the domain
reduction parameters were 10 for the in-layer (lateral) and 4 for the inter-layer (bottom) multi-scale bound-
aries. The corresponding full domain has 13 layers and a total size of 70,200 atoms. The reduction of the effec-
tive computational domain due to the applied MSBCs is almost four times. The indenter radius was 40 Å in
this simulation.

Fig. 21 shows vertical positions of atoms at the middle cross-section for both reduced and full domains after
the indenter penetrated to the depth of 12.5 Å. The results of the multi-scale simulations are in good agree-
ment with the benchmark full domain solution. The maximum error in displacement is found at the edges
of the bottom layer of the reduced domain where two multi-scale boundaries (bottom and lateral) of the
reduced domain intersect, and the error here is estimated at approximately 12%. However, the MSBCs inter-
section point represents an extreme case, and the error is considerably lower for the rest of the domain. Thus,
the mean error over the reduced domain cross-section shown in Fig. 21 is only about 3%.

Load vs. indentation depth curves are shown in Fig. 22 and reveal a rather close comparison between the
multi-scale and full domain solutions. It is particularly remarkable that the breakage of the graphite layers
occurred at almost the same depth and load for both types of simulations. The maximum deviation in force
is at the last step before the fracture in the reduced domain test (the fracture occurs one step later in the case of
full domain calculations). The deviation is approximately 256 eV/Å, which corresponds to the percentage
error of 19.2%. The error goes up considerably only at the last several indentation steps. For instance, the
error is under 5% until the indentation depth of 10 Å. At the same time, the error in the depth at which
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Fig. 22. Force (eV/Å) vs. indentation depth (Å).
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Fig. 21. Middle cross-section of the graphite layers under the indenter: reduced domain simulation (crosses) vs. full domain solution
(circles). R = 40 Å. Domain reduction parameters: aDRP

lateral ¼ 10, aDRP
bottom ¼ 4. Depth of indentation is 12.5 Å.
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the fracture occurs is only one indentation step, or just 3.3%. Again, as in the previous example, the main
source of the error lies in considerably high non-linear deformations present at the last stage of the nano-
indentation test.

We have also investigated the effect of the multi-scale boundaries when the larger values of the domain
reduction parameters are used and show some results of these simulations below. Unfortunately, for these sim-
ulations we cannot provide comparisons to the full domain solutions similar to those that were given previ-
ously in this section, because the sizes of the corresponding full domains are too large.

For the reduced domain in these simulations we have used the same domain that served as a full domain for
the previous example. The domain has 13 layers and a total size of 70,200 atoms. The size of the indenter was
the same, R = 40 Å. We have used several values of the domain reduction parameters: 6 and 20 for the bottom
multi-scale boundaries, 30 and 50 for the lateral. Note, that for the bottom domain reduction parameter, each
unit corresponds to two single graphene layers, doubling the actual number of graphene layers virtually added
to the reduced domain through the applied MSBCs.

Here we present the results of the two multi-scale simulations, identified as MSBC1 and MSBC2. The
domain reduction parameters used for these simulations were aDRP

lateral ¼ 30, aDRP
bottom ¼ 6 for MSBC1 and

aDRP
lateral ¼ 50, aDRP

bottom ¼ 20 for MSBC2. The sizes of the corresponding full domains are: 480,378 atoms for
MSBC1 and 1,909,746 atoms for MSBC2. Values of all the cut-off parameters used for calculation of the
MSBCs (mc for the lateral, and nc, mc for the bottom multi-scale boundaries) were 4 for MSBC1 and 6 for
MSBC2. Fig. 23 shows the middle cross-section of the deformed reduced domain for the MSBC2 simulations
after indenting to the depth of 30 Å. The initial positions of the top and bottom layers of the reduced domain
are shown with the dashed lines in the figure. As we can see, the deformation of the multi-scale (or deformable)
boundaries is considerable.



Fig. 23. Middle cross-section of the graphite layers under the indenter for multi-scale simulations example MSBC2. Only reduced
atomistic domain is shown. R = 40 Å. Domain reduction parameters: aDRP

lateral ¼ 50, aDRP
bottom ¼ 20. Depth of indentation is 30 Å. The dashed

lines represent positions of the top and bottom layers of the reduced domain prior to indentation.

Fig. 24. Force (eV/Å) vs. indentation depth (Å).
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The force–depth curves are given in Fig. 24. Here we present results of the two multi-scale simulations, ear-
lier identified as MSBC1 and MSBC2, along with the results when standard fixed boundary conditions were
applied to the same domain. Such a comparison helps to see the effect of the applied MSBCs. The behavior of
the system with the fixed boundaries is too stiff, which results in a very steep slope of the force–depth curve and
the breakage of the graphite layers at a relatively small indentation depth. The applied MSBCs virtually move
the fixed boundaries further away from the indentation area, thus reducing the overstiffening of the system due
to the fixed boundary conditions. The size of the virtual full domain grows with the growth of the domain
reduction parameters; and as a result, the slope of the force–depth curve reduces. The breakage of the graphite
layers occurs at approximately the same force for all the three simulations. Here we have to take into account
that due to the constant value of the indenter displacement step (0.5 Å) and a very steep growth of the curve
corresponding to the fixed boundaries example, the actual value of the force at the break point for this sim-
ulation is higher than the one shown at the plot. While the force values at the breakage points are close for all
the three simulations, the indentation depths are quite different. Thus, for the MSBC2 example the breakage
occurred after indenting to the depth of 31 Å, which is approximately twice that of the simulation when fixed
boundary conditions were used.

7. Computational savings due to the method

The most expensive part by far of the current calculations is the evaluation of inter-atomic forces using the
three-body Tersoff–Brenner and two-body Lennard–Jones potentials. The number of operations correspond-
ing to this part of calculations for the whole system is roughly proportional to the total number of atoms
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(assuming that a finite cut-off for the Lennard–Jones interactions is used), which in its turn is proportional to
the volume of the computational domain, or area of the computational domain in the case of 2D. For instance,
if we assume a cubic domain, the number of atoms can be roughly estimated as N3, where N is the number of
atoms across a single linear dimension.

At the same time, the number of operations required for the evaluation of MSBCs is proportional to the
number of atoms lying on the boundary of the computational domain, which is on the order of N2 in the case
of 3D and on the order of N in the 2D case. If we consider a nano-indentation problem similar to that shown
in Fig. 16, but use a cubic full domain with N atoms across a single linear dimension and assume that the same
value of the domain reduction parameter, aDRP = a, is used in all three directions, the number of atoms elim-
inated from the simulations can be estimated as
N 3 � ðN � 2aÞ2ðN � aÞ ¼ 5N 2a� 8Na2 þ 4a3. ð24Þ

The number of atoms lying on the surface of the reduced domain where MSBCs have to be enforced can be
estimated as
4ðN � aÞðN � 2aÞ þ ðN � 2aÞ2 ¼ 5N 2 � 16Naþ 12a2. ð25Þ

As follows from (24) and (25), the use of MSBCs saves �a3 computations, while their cost scales only as �a2.
If we take a = aN, where 0 < a < 1/2, then the number of the eliminated atoms and the number of atoms at the
multi-scale boundaries will be correspondingly
N 3ð5a� 8a2 þ 4a3Þ and N 2ð5� 16aþ 12a2Þ. ð26Þ

Thus, if the ratio of a to N is kept constant, the size of the eliminated domain scales as N3, whereas the size of
the boundary of the reduced domain, where MSBCs have to be evaluated, scales as N2.

The order of the number of operations required for the MSBC calculation for each unit cell at the multi-
scale boundary can be estimated based on the formulas (17) and (23) for the 2D and 3D cases correspondingly
as
ð2mc þ 1Þn3
dof and ð2mc þ 1Þð2nc þ 1Þn3

dof . ð27Þ

In the above equations, mc and nc are the cut-off parameters used in the summations in formulas (17) and (23),
and ndof is the number of degrees of freedom per unit cell. According to our estimations, the number of oper-
ations per single atom at the multi-scale boundary resulting from (27) is not larger than the number of oper-
ations required for calculations of the inter-atomic forces for a single atom.

Based on the above estimations, the total number of operations saved due to the application of the MSBCs
is most strongly influenced by the size of the eliminated part of the computational domain. The actual CPU
times for the simulations presented in the current work seem to follow this general trend. For instance, the
time of the calculations for the example of Section 6.2.1 (lateral multi-scale boundary) using the in-layer
MSBCs was approximately half of that for the corresponding full domain atomistic simulations, while the
reduction of the computational domain was slightly more than two times.

8. Discussion and conclusions

A quasi-static formulation of the method of multi-scale boundary conditions (MSBCs) has been presented.
The method allows simulating deformable boundaries in periodic atomic lattice structures. Due to these
deformable boundaries, the simulated reduced domain behaves as if it were a part of a much larger system
of a given size (a full domain) with standard displacement boundary conditions applied. The MSBCs reduce
the effective size of the computational domain and save the computational cost of the atomistic simulations.
The assumption of regularity and periodicity, as well as a linear dependency between forces and displace-
ments, have to hold only in the vicinity of the multi-scale boundary and in the part of the domain (coarse scale
region) which is excluded from the computations. At the same time, large deformations, including non-line-
arity and even lattice defects, may be present inside the simulated reduced domain (fine scale region) provided
that they do not have a profound effect on the vicinity where the MSBCs are applied. The accuracy of the
method goes down as a function of domain reduction. However, the performed quantitative error analysis
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suggests that the method’s accuracy is satisfactory up to the final stages of the tests when considerable non-
linear deformations of the multi-scale interface were present. Even in these cases, the method allowed for rea-
sonable predictions, often up until the fracture points.

The method was applied to multi-scale atomistic simulations of nano-indentation of single graphene sheets
and multi-layered graphite. However, applications of the method are not limited to these types of carbon
nano-structures. The MSBCs derived here, with some modifications, can be applied to simulations of carbon
nano-tubes (CNTs). For instance, the in-layer MSBCs similar to those presented in Section 3 for a single
graphene layer can be used for multi-scale simulations of single-wall CNTs, and additional inter-layer MSBCs
similar to those derived in Section 5 may be applied to multi-wall CNTs.

The method of MSBCs may also be viewed as an advanced type of boundary conditions that can be used
for the standard molecular mechanics simulations. Usually, in atomistic simulations two types of boundary
conditions are employed: fixed and periodic. For some problems however, such as indentation, neither of these
are appropriate. The periodic boundary conditions introduce inadequate periodicity, while fixed boundary
conditions lead to an artificial stiffening of the system. One possible important application of the method
of MSBCs is the reduction of overstiffening of the atomic system due to fixed boundaries. This issue was
addressed in the end of Section 6. Application of the multi-scale boundary conditions helps to artificially move
the fixed boundaries further away without the need to simulate a larger domain. This approach can be par-
ticularly useful for systems and materials that are able to undergo large elastic deformations (e.g., graphite
and CNTs). In this case the effect of the fixed boundaries may extend very far inside the domain. The MSBC
approach allows an adequate and straightforward multi-scale modeling of such systems.

Another interesting possibility for the present method consists in the application to crystalline lattice struc-
ture, including atomistic simulations of crystalline metallic nano-wires and films; efforts in this direction have
already been initiated [26]. Crystal structure applications raise the issue of the passage of lattice dislocations
across the multi-scale interface. Such an extension of the present methodology is believed to be straightfor-
ward due to the absence of an explicit continuum model over the coarse scale region, and it comprises another
exciting challenge for the future.
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